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Abstract. To successfully learn from the information provided by avail-
able information sources, the choice of automatic method combining
them into one aggregate result plays an important role. To respect the
reliability in the source’s performance each of them is assigned a weight,
often subjectively influenced. To overcome this issue, we briefly describe
the method based on Bayesian decision theory and elements of infor-
mation theory. In particular we consider discrete-type information, rep-
resented by probability mass functions (pmfs) and obtain an aggregate
result, which has also form of pmf. This result of decision making pro-
cess is found to be a weighted linear combination of available information.
Besides the brief description of the novel method, the paper focuses on
its comparison with other combination methods. Since we consider the
available information and unknown aggregate as pmfs, we mainly focus
on the case when the parameter of binomial distribution is of interest
and the sources provide appropriate pmfs.

Keywords: weighting methods, parameter estimation, Kerridge inac-
curacy, maximum entropy principle, binomial distribution

1 Introduction

Exploiting available information plays an important role in many parts of mathe-
matics such as parameter estimation, quality control, etc. and their applications.
Usually, the processed information originates in many sources. The sources of
information can range from experts in particular field to sensors measuring phys-
ical variables. To obtain the reliable result of interest based on these data we
need to assign each source a weight. This weight should express reliability of a
particular source and is usually assigned by an extra expert, thus is subjectively
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2 V. Sec¢karova

influenced. It is worthwhile, especially in complex situations, to prevent the sub-
jectivity. This paper focuses on the objective choice of weights under several
commonly acceptable assumptions.

Throughout the paper we assume the sources provide the information about
a common random vector having finite amount of realizations. The probability
distribution over this random vector depends on an unknown, generally multidi-
mensional, parameter, representing the ideal aggregated information. Our aim,
the parameter estimate based on available data, will then be a combination of
these data. Useful survey on combination methods from the mathematical and
behavioural point of view can be found in [4]. To obtain the aggregate we ex-
press the parameter estimation task as a task of decision making and exploit the
basic steps of Bayesian decision theory (see e.g. [6], Section VIIID) to compose
an optimal decision. The optimality criterion is based on the minimization of
an expected loss. The specific loss function we adopt is based on the elements
of information theory. The parameter of interest is assumed to be a probability
mass function (pmf), i.e. a column vector whose non-negative elements sum to
unity, and the data provided by information sources are in the form of pmfs, too.
A nice survey on the combination methods using elements of information theory
can be found in [1], describing approaches with weights more or less subjectively
influenced. To eliminate the subjective influence, we work with the method based
on the Kerridge inaccuracy [8] and maximum entropy principle [14], which leads
to a final weighted combination with weights determined during the construction
of this combination [13]. The weights in the final combination are based on the
information included in provided data and thus no subjective influence is added
to them.

The main goal of this paper is to compare the proposed method with other
methods in the considered field. We focus on the estimation of the parameter in
binomial distribution. The methods serving to comparison belong to the group
of empirical Bayes methods [11], where the prior distribution is computed from
the previous observations.

The paper is organized as follows: the next section provides a brief description
of our approach based on Bayesian decision theory and elements of information
theory, the third section provides an overview of methods used for comparison,
the fourth section gives the resulting estimates obtained by the considered meth-
ods based on the same data sample. The fifth section contains conclusion and
topics for the future work. The previously published derivations connected with
our approach (see [13]) can be found in the Appendix.

2 Proposed Method

In this section we briefly introduce a method combining the available informa-
tion based on elements of information theory. The motivation for this particular
choice is based on the aim of elimination of the subjectivity in the weights.
For the weights’ assignments we focus on the natural part included in provided
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WEIGHTED COMBINATION METHODS 3

data, i.e. we exploit the amount of information included in them. This of course
requires specific setup described in the following paragraphs.

Let us start with a parameter estimation task, where the parameter h has
the form of pmf, belonging to the probabilistic simplex. To obtain its estimate
h we exploit Bayesian decision theory and look for the estimate minimizing the
expected loss function. We select the loss function as a function computing the
inaccuracy between a pair of pmfs - the Kerridge inaccuracy K(.,.) (see [3]). The
estimate h then coincides with the conditional expectation E[.|.] with respect to
the posterior probability density function (pdf) 7(h|D) of the unknown param-
eter h (an optimal aggregate) conditioned on available data D = (g1,...,gs)7
formed by pmfs g; given by s sources, s < oo:

h= arg mlnEW(MD)[ (h, iL)|D]
heH
= arg man(Eﬁ(MD) [h|D], h) = Ex(npy[h|D], (1)
heH

where H = {(ﬁ(ggl),...,ﬁ(xn)):zy Ch(w) = 1 h(x) >0, i=1. n} and

g; € PNL j=1,...,s. Sources describe a common random vector X having possi-
ble outcomes {x;}" 1, n < 0o, i.e. provide the probabilities g;(z;) = P;(X = z;),
ij=1...s

To compute the estimate (1) we need to determine the posterior pdf = (h|D),
which is yet unknown. To determine its form, we exploit the maximum entropy
principle [14]. It leads to the convex optimization:

#(hD) = arg min [ / #(h| D) log 7 (h| D)dh| | @)
7#(hD)eM LJH

where M = {%(h|D) Eznp)(K(gj, h)|D) < B;(D), j=1,...,s,
Sy ®(h|D)dh = 1}.

The constraints in M express the assumption the j** source will accept h
as a compromise (optimal aggregate) if it serves as a good approximation of
j*" pmf. According to [3] we expect that from the Bayesian point of view the
Kerridge inaccuracy employed in the set M should reach low values for good
approximations. The optional scalar 5;(D) reflects “tolerance” of 4t source to
accept h as an approximation of its opinion g;.

The optimization results in pdf of Dirichlet distribution (see Subsection 6.1)
and the final point estimate h of h is the expected value of this distribution and
has the form of a weighted combination of given pmfs g; (see Subsection 6.3):

Eznpy(h(2:)|D) = il( )+ Z Xi(D)gj(z:), i=1,...,n, (3)

where
1 Aj(D)

Ao(D) = n+ 35 N(D)
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4 V. Sec¢karova

The last step of the described method involves the computation of the weights,
which heavily depends on evaluation of Kuhn-Tucker multipliers A\;(D) > 0 aris-
ing in the optimization task (2). The straightforward derivation of the multipliers
can be found in Subsection 6.2. The problem, which has not been solved yet, is
that the multipliers still depend on upper bounds §;(D) for expected Kerridge
inaccuracies in (2). Here, we leave each 3;(D) free and inspect the behaviour of
the estimator (3) as a function of corresponding A;(D), j =1,...,s. A promising
objective solution is being elaborated in Section 4 and suggests the upper bounds
(linearly shifted - see (9)) as the mean Kerridge inaccuracy in the following form:

251 Kok, 95)
S

B(D) = K(gk, hdata), k=1,....5, (4)

where hgata(zi) = ¢ H;Zl gj(z;), i=1,...,n, ie. geometric pool of opinions
is taken as an aggregate acceptable by all information sources. Thus we can see,
that the weights exploit the information captured in the provided data. Since
they depend on the choice of the upper bounds §;(D), we study this connection
in Section 4.

3 Empirical Bayes Methods

In this section we briefly introduce the methods we use for comparison in Section
4. As mentioned earlier, we try to avoid a subjective influence on the weights used
in the aggregation process. The first idea, when there is no extra expert assigning
the weights to available sources, is to use the equal weights. This approach can
be found e.g. in [1].

Since equal weights do not reflect the reliability of the sources at all, we focus
on different type of methods, namely, methods exploiting previously obtained
data. The next section will bring the comparison of our method with group of
empirical Bayes methods. These methods exploit the Bayes’ formula in order to
get the estimate of an unknown parameter. Their advantage lies in using the prior
distribution based on the data available from the previous time instants, rather
than choosing a specific prior distribution. When the prior information enters
the Bayes’ formula the final estimate is a weighted combination of available data.

The empirical Bayes methods are well-applicable in case when the estima-
tion of a multidimensional parameter being a pmf is of interest. We consider four
different approaches in this field, i.e. Griffin-Krutchkoff’s estimator [7], Copas’
second estimator [5], Lemon’s estimator [10] and smooth incomplete beta esti-
mator [12]. Formulas belonging to the mentioned estimators, using a common
notation, can be found in [12]. Griffin-Krutchkoff’s estimator provide a linear
optimal estimator, where the optimality origins in minimizing the risk based on
squared error loss. Similar situation considered Copas proposing an estimator,
which is again assumed to be linear, it minimizes mean squared loss and guar-
antees a minimax estimate. Lemon’s estimator uses a mean value of specifically
chosen functions reflecting the current and previous data as posterior pmf. In
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particular the estimator focuses on a conditional probability of the modelled
variable conditioned by the unknown parameter while plugging in some esti-
mate of this parameter. All three methods can be easily applied to estimation of
the parameter of binomial distribution. Finally, we inspect a smooth incomplete
beta estimator, derived particularly for the case of binomial distribution. Here,
it is suggested to use a function based on incomplete beta function. The param-
eter of interest and the final estimate have both form of pmf. In all cases the
resulting pmf is a weighted combination of available data, thus these methods
are the perfect choice for comparison with our method in (3).

The difference between the above group of methods and method in (3) is in
the approach to the available data. To obtain the final estimate the former use
the empirical prior distribution based on the previous observations. The latter
does not use any prior information and combines data pieces at once.

4 Comparison

In this section a comparison of the proposed method and empirical Bayes meth-
ods is given. Assume we are interested in estimation of the probability p € (0,1)
of success and the probability of failure 1 — p in /N independent trials modeled
by binomial distribution.

4.1 Illustrative Example

Thus in the case of the empirical Bayes methods we are looking for the estimate
p (at the same time for the estimate 1 —p) of an unknown parameter p of random
variable Y distributed according to Bi(N,p). The probability of k successes in
N independent trials is then P(Y = k) = (]Z)pk(l —p)N=F. Let us assume we
observe N trials at s time instants. Each time we obtain the number of successes
y; and failures N —y;. To obtain the aggregate p in empirical Bayes methods we
use the binomial fractions y; /N, which can be viewed as empirical estimates of p.
We can then also get the estimate of probability of failures simply by computing
1—p.

To apply the method proposed in (3) we take a look at the considered sit-
uation from a different perspective. The unknown probability of success and
failure form a 2-dimensional unknown parameter h. Let X denote a random
variable having two realizations (n = 2), namely, {z1,z2} ={successfailure}
and thus h = (h(z1), h(z2))?. Also assume we have s sources providing pmfs g;,
7 =1,...,s. We realize that according to the notation in the previous paragraph
we have

h=(h(x1), h(z2))" = (p,1 —p)"
h =(h(z1), h(22))" = (p,1 - p)T
9; =(95(x1),9;(x2))" = (y;/N, (N —y;)/N)", j=1,...,

»
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6 V. Sec¢karova

Now we can focus on how the previously mentioned methods work. We gener-
ate four random values, number of successes, from Bi(10,1/3). That is, we have

s = 4 and for each j = 1,...,4 we can compute the binomial fractions y;/10
and their counterparts (10 — y;)/10 to get pmfs g;. The data are the following:
(%, 101_0241) (g1(71), g1(22)) g0.3,0.7§
0.4,0.6
b= e o . | (0.2,0.8)
(%5, * ™) (94(x1), ga(x2)) (0.1,0.9)

The upper picture in Fig. 1 shows the behaviour of the Kuhn-Tucker multi-
pliers \;(D) depending on the values of 55 (D), j = 1,...,4, see (4). We decrease
linearly shifted bounds 37 (D) (see (9)) as follows:

B71(D) =87 (D) x (0.85 — 1 x 0.0084) for instants [ = 1,..., 100, (5)

B7.1(D) =K(9g5, hdata)- (6)

In case of dynamic setup, where with each time point we obtain a new data,
the empirical Bayes methods update the estimate by new data. In case of our
method, the data g;; in (3) can be viewed as the estimate given by j!* source
based on its data up to time point ¢. In the next time step, a new estimate
gjt+1 is obtained and again, formula (3) is used to combine all available g; 41,
j=1...,s.

The bottom picture in Fig. 1 brings the final estimate (final aggregate) h
computed by method in (3) with changing value of A;(D). Also the source with
the highest and the lowest entropy are drawn.

The resulting estimates h are given in the Fig. 2. They were obtained using
equal weights (EW) and the following methods: Griffin-Krutchkoff’s estimator
(GK), Copas’ second estimator (Co), Lemon’s estimator (Le) and a smooth
incomplete beta estimator (BE), all briefly introduced in the previous section. We
can see that even under a small number of available data our method and Copas’
second estimator performed quite well regarding the information, that the data
were drawn from binomial distribution with probability of success equal to 1/3
(probability of failure is thus 2/3). In particular, Copas’ estimator coincides with
the estimator based on equal weights, the mean value of drawn data. The results
obtained from Lemon’s, Griffin-Krutchkoff’s estimators and smooth incomplete
beta estimator differ from the true value of h = (h(x1), h(z2))?, but are closer
to what we would naturally expect from obtained data, which can be misleading
for small sample cases. A case with larger sample is studied in Subsection 4.2.

At the end we note that while the empirical Bayes methods exploited the
fact that we focus on binomial distribution, our method (3) do not need the
information about the original distribution to obtain h. This predestinates our
method to be a normative method for estimation of pmfs.

4.2 Monte Carlo Simulations

In this subsection we study the behaviour of considered methods in Monte Carlo
study. We assume the same setup as introduced in Subsection 4.1, thus we gen-
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Kuhn-Tucker multipliers ;(D), j =1,...,4
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Fig. 1. The behaviour of the \;(D), j = 1,...,4 based on 100 different decreasing
values of 87 (D) using (5) and the final weighted combination h(x;), i = 1,2 based on
computed \;(D), j=1,...,4.

erate 10 and 1000 4-tuples from binomial distribution Bi(10,1/3) and with each
new set of data we compute the estimates as in Subsection 4.1. In both cases
the upper bounds £;(D) used in our method were with each new set of random
values set to 37(D) = B7,(D) x 0.40, where 37 (D) is defined in (6) (see also
(4))-

To compare the estimators we are interested in common values as sample
mean, computed from all 40 (or 4000) values, mean value and variance of h(z;)
obtained from 10 (or 1000) estimates given by considered estimators. We also
compute the square error, exploiting the squared distance of the values of par-
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Comparison of the proposed and empirical Bayes methods
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Instants [ = 1,...,100 used to obtain decreasing values of ﬁ]’-‘(D), j=1,....4

Fig. 2. Empirical Bayes methods in comparison with method based on the Kerridge
inaccuracy and maximum entropy principle (3) in case when the estimate ﬁ(m) of
the parameter p = h(z1) of binomial distribution is of interest (also its counterpart
h(xs) = 1— h(x1) is drawn). For the proposed method, the estimate was computed for
decreasing values of 57 (D), j =1,...,4, see (5).

ticular estimator from the sample mean:

M
sq.error = Z (hm (1) — sample mean)?, M = 10, 1000

m=1

In case when only 10 4-tuples were generated, the sample mean equals 0.3850
and the results are the following:

Proposed method| EW | GK | Co Le BE
mean(h(z1)) 0.3415 0.3850(0.4100|0.3850(0.3939|0.3939
var(h(z1)) 0.0037 0.0068]0.0121]0.0068(0.0061|0.0061
sq.error 0.0526 0.0615]0.1153|0.0615[0.0557|0.0557

We can see that according to the data in the sample, the estimator based on
equal weights and Copas’ second estimator work well, Lemon’s and smooth in-
complete Beta estimator are slightly different from the sample mean. If we take
the information about the true distribution of generated data, Bi(10,1/3), our
method gives really good estimate of the unknown parameter h(z1) even for such
small sample.

In case of generating 1000 4-tuples (first 10 4-tuples coincide with those used
previously) the sample mean is 0.3350. The results for considered methods are
the following:

The Proceedings of ECML/PKDD 2013 Workshop
Scalable Decision Making: Uncertainty, Imperfection, Deliberation (SCALE)
September 23, 2013, Prague, Czech Republic



WEIGHTED COMBINATION METHODS 9

Proposed method| EW | GK Co Le BE
mean(h(z1)) 0.2994 0.3350( 0.3307 |0.3344| 0.3335 | 0.3335
var(h(z1)) 0.0028 0.0051| 0.0142 0.0062| 0.0117 | 0.0117

Sq.error 4.0902 5.0514(14.2110(6.1772|11.7356(11.7222

Here we see that all of the considered Bayes estimators perform really well,
the estimate h(x1) based on our method is slightly different from the sample
mean and the true value h(z;). On the other hand the variance of h(z1) and the
squared error is the lowest among all considered estimators, which after fixing
the values of the upper bounds 3;(D) can lead estimates based on our estimator
being closer to the sample mean and true value of the unknown parameter h(x1).

5 Conclusion and Future Work

In this paper we briefly described the method for combining data based on es-
timation of an unknown parameter. Both, data and parameter, are being pmfs.
This method is based on the Kerridge inaccuracy and maximum entropy prin-
ciple. The final estimate is a weighted combination of data, where the weights
are obtained without any subjective influence, yet are non-trivial. They heavily
depend on the Kuhn-Tucker multipliers arising during the computation. The
aim of this paper consists in comparison with empirical Bayes methods while
considering the binomial distribution and estimation of its parameter — proba-
bility of success. The results are satisfactory, even on a very small sample, the
proposed method worked really well compared to the empirical Bayes methods.
Thus after fixing the value of Kuhn-Tucker multipliers, which is the aim of our
future work, the method has a great potential in small sample theory and many
other fields of statistics.

6 Appendix

6.1 Determination of the estimate #(h|D) of the posterior pdf
= (h|D)

To determine the estimate of the posterior pdf 7(h|D) we focus on the Kuhn-
Tucker function of the optimization task (2) and arrange it as follows:

(h|D)

LEHDRAD) = [ FniD)log | ————F O

Z(A1(D),.., s (D))

—log Z(A(D), ..., A(D)) /H #(h|D)dh — Y A;(D)B;(D)
j=1

—_——
=1

dh

)
~dena() ([ FplD)I-1).,
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10 V. Seckarova

where Z(Ai(D),...,As(D)) is a normalizing constant, A\;(D) > 0 are Kuhn-
Tucker multipliers, j = 1,...,s+ 1 and X(D) = (A1 (D),..., A\s(D)). According
to the properties of the Kullback-Leibler divergence KLD(.,.) [9], the first term
is minimal for 7(h|D) being the pdf of the Dirichlet distribution with parameters
2221 Aj(D)gj(x;) +1, ¢ =1,...,n. The last term of (7) is equal to zero, the
rest does not depend on 7(h|D) and does not influence the minimization. Thus
the estimate #(h|D) of the posterior pdf w(h|D) in (2) is a pdf of Dirichlet
distribution with parameters mentioned above.

6.2 Determination of the Kuhn-Tucker multipliers

In this subsection we derive the formula for Kuhn-Tucker multipliers \;(D)
arising in the optimization task (2) and playing the key role in the combi-
nation (3). Thus we compute the first derivatives of the Kuhn-Tucker func-
tion (7) with respect to A\;j(D), j = 1,...,s and set each derivative equal to
zero in order to find a minimum of this Kuhn-Tucker function. We omit the
first and the last term of considered Kuhn-Tucker function from differentiation.
The first term is already minimized - #(h|D) is a pdf of Dirichlet distribution
Dir(1+ Z;:l Aj(D)g;(x;),i =1,...,n) and according to the properties of the
Kullback-Leibler divergence we have KLD(#(h|D)||#(h|D)) = 0. Since #(h|D)
is a pdf, the last term is equal to zero.
The first derivative of (7) with respect to Ag(D) looks then as follows:

o |- log Z(A1(D), ..., As(D)) — ;M(D)ﬂj(D)

9 [0+ Y, A (D)g(a:))
= o <‘1°g T(n+ 53, 5 (D) ) = A(D)

=—Z¢ 1+Z>‘j(D)gk(1'i) gr(xi) + n+z>\j(D) 1 — Br(D)
:—Z%gk(%)Jﬂ/Jo—ﬂk(D) VA0 =1,...,8 (8)

where 1 is the digamma function, see [2].

By using one-sided inverse - left inverse - we obtain the following system of
nonlinear equations:

—D(sxn)yP(nx1) + Po,(sx1) = B(sx1)
—D(sxn)®nx1) = Bsx1) — Yo,(sx1)
Lp(nx1) = =Digg ey (Bisx1) = %o,(sx1))
P(nx1) = 7D1;flt,(n><s)/32<s><1)’ )
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where D = (g1,...,9s)7 (see Section 2). Thus:

¢(1+Z] )‘](D)gj(xl)) Z Dleft 17 (D)

B+ 30, A (D)g; () : >, ~Dik (D)

and to obtain the multipliers we use the inverse digamma function:

Zj Aj(D)gj(x1) = ¢_1(Z]‘ left Uﬂ*( ) —

A (D)gj () = 1S, —Dg&,njﬁ;w» -1

The results using matrix notation are the following:

(DT)(nxs))\sxl = (wil(*Dlzflt)(nXs),BEksxl)))(nxl) - 1(n><1)

Asxt) = (DT )ik (omy (7 =Digh (s Bt et = et ) -
(10)

6.3 Determination of the final combination

We exploit the formula for the expected value of random vector having Dirichlet
distribution Dir(1 + >7_; A\j(D)g;j(zi),i = 1,...,n) (see Subsection 6.1) and
conclude the following:

- 1 " N(D)g;
B nty () D) = h(ag) = — 2=t )(g( )

o 1(1+z] LA (D)g; (@)

:1"’2]' 1A (D)gj(@i)
n+ 3251 (D)

fori=1,...,n.
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